Welcome!

SAP HANA Cloud Authors: Pat Romanski, Elizabeth White, William Schmarzo, Ian Khan, Liz McMillan

News Feed Item

Smart Metering in Europe - 9th Edition

NEW YORK, Nov. 8, 2012  /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Smart Metering in Europe – 9th Edition
http://www.reportlinker.com/p0574956/Smart-Metering-in-Europe-–-9th-Edition.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Electrical_Equipment

Executive summary

EU27+2 has 277 million metered electricity customers and the annual demand for electricity meters for new installations and replacements is in the range of 12–17 million units. Penetration for smart meters, providing more comprehensive functionality than basic meter data collections, was 18 percent at the end of 2011. By 2017, Berg Insight projects that the rate will increase to 56 percent, driven by large rollouts in Spain, France and the UK, in combination with nationwide rollouts in several smaller countries. The installed base of smart electricity meters is forecasted to grow at a compound annual growth rate of 20.5 percent between 2011 and 2017 to reach 154.7 million units at the end of the period. The high growth rate will be sustained until the end of the decade as nationwide rollouts are completed in France, the UK and several other countries. A decision by Germany to introduce smart metering would extend the strong momentum for smart meters in Europe into the 2020s. At the end of Q3-2012, eleven European countries had developed regulatory roadmaps for the full-scale introduction of smart meters. The latest new country to adopt this policy was Austria in April 2012. Sweden and Italy completed deployments at the end of 2009 and 2011, respectively and Finland will be ready by the end of 2013, followed by Estonia and Norway in 2017. France and Spain have set target dates in 2018, while Austria, Ireland, the Netherlands and the UK aim for nationwide rollouts to be completed during 2019/2020. Furthermore, the governments in Denmark and Malta have put their countries on track for full coverage of smart meters before the end of this decade by supporting rollouts by state-controlled electricity companies. Cyprus, Poland, Portugal and Romania are additional countries leaning towards regulation-driven smart meter rollouts. Germany currently prefers that rollouts should be industry-driven and considers only minor requirements for household customers with high electricity consumption. A cost benefit analysis of the business case for smart metering in Germany due in 2013 may however change this policy. Government attitudes towards smart metering in other European countries ranges from keen interest expressed through active support for large pilot projects to virtual indifference.

As a result of the massive replacements, smart meters will come to dominate the European electricity metering market, accounting for over 95 percent of the total volume. After reaching a low point of 2.6 million units in 2009, demand for smart meters recovered in 2011 as massive installations began in Spain. In 2014 the market is expected to reach an inflection point as mass rollouts begin in France, the UK, the Netherlands and several other countries. During the second half of the 2010s, Berg Insight expects that annual shipments of smart electricity meters will be in the range of 25–30 million units. The aggregate investment cost for the deployment of 110 million smart electricity meters in Europe between 2011 and 2017 is projected to around € 15.8 billion. Based on industry data the capital expenditure for a smart metering project in Western Europe can vary in the span of € 140–240 per metering point. In Central Eastern Europe the projected cost is around € 100–150 per metering point, due to lower labour costs. Next generation powerline communication (PLC) technologies are a key enabler for the new wave of smart meter rollouts in Europe. PLC is the dominant last-mile communication technology for smart meters on the European market with a market share of around 85 percent. The G3-PLC and PRIME initiatives, launched by ERDF and Iberdrola respectively in the late 2000s have now evolved into complete standards, supported by commercially available chipsets from leading semiconductor vendors. Both standards have been approved by the ITU and the industry associations created to promote them are now cooperating around the new more comprehensive G.hnem PLC standard. In addition, the IEEE has launched a widely supported PLC standards initiative. Berg Insight has the opinion that a certain degree of competition between PLC standards is a healthy driver for innovation that will do little harm by fragmenting the market. All standards largely use the same underlying technology, which enables semiconductor vendors to use the same core platforms to create many different types of PLC chipsets. Regional variations will always be inevitable due to the different characterstics of electricity networks around the world. When it comes to large-scale deployments, the balance between cost and desired performance will decide the choice between basic or more advanced PLC standards.

Table of Contents

Table of Contents. i
List of Figures
ix
Executive summary..1
1 Electricity, gas and district heating markets in Europe 3
1.1 Energy industry players3
1.2 Electricity market 5
1.3 Gas market ..13
1.4 District heating market16
2 Smart metering solutions....17
2.1 Introduction to smart grids ...17
2.2 Smart metering .20
2.2.1 Smart metering applications ....20
2.2.2 Smart metering infrastructure...24
2.2.3 Benefits of smart metering ..27
2.3 Project strategies ...29
2.3.1 System design and sourcing ...29
2.3.2 Rollout and integration ...30
2.3.3 Implementation and operation .31
2.3.4 Communicating with customers ...31
2.4 Regulatory issues ..32
2.4.1 Models for the introduction of smart meters 32
2.4.2 Standards and guidelines ...33
2.4.3 Individual rights issues...36
3 Networks and communication technologies ....37
3.1 Smart grid communication networks ..37
3.1.1 Smart grid network architecture....39
3.1.2 Communication technology options..41
3.2 PLC technology and vendors....42
3.2.1 International standards organisations44
3.2.2 G3-PLC..46
3.2.3 PRIME....48
3.2.4 Meters & More.50
3.2.5 LonWorks ...51
3.2.6 HomeGrid...52
3.2.7 HomePlug...52
3.2.8 Semiconductor companies .54
3.3 RF technology and vendors .60
3.3.1 International standards organisations61
3.3.2 Wi-SUN..61
3.3.3 ZigBee ...62
3.3.4 WAVE2M62
3.3.5 Z-Wave ..63
3.4 Cellular technology and vendors....63
3.4.1 2G networks ....63
3.4.2 3G and 4G networks .64
3.4.3 Cellular M2M module vendors .64
4 Smart metering industry players...67
4.1 Meter vendors...67
4.1.1 Landis+Gyr 68
4.1.2 Itron ..73
4.1.3 Elster.76
4.1.4 AEM..78
4.1.5 Aidon 79
4.1.6 Apator....79
4.1.7 Circutor..80
4.1.8 Diehl Metering .80
4.1.9 EMH Metering..81
4.1.10 Elgama Elektronika ...81
4.1.11 Energomera82
4.1.12 GE Energy ..82
4.1.13 Hager83
4.1.14 Iskraemeco.84
4.1.15 Janz ..84
4.1.16 Kamstrup ....85
4.1.17 Orbis.85
4.1.18 Osaki Electric ..86
4.1.19 RIZ ....87
4.1.20 Sagemcom.87
4.1.21 Secure Meters .88
4.1.22 Sensus...89
4.1.23 Sogecam ....89
4.1.24 ZIV ....90
4.2 Smart grid solution providers ....90
4.2.1 ABB...91
4.2.2 ADD Grup...91
4.2.3 Connode92
4.2.4 Corinex ..93
4.2.5 CURRENT...94
4.2.6 Dr Neuhaus 94
4.2.7 Echelon .95
4.2.8 Embriq...96
4.2.9 Metrima..96
4.2.10 NURI Telecom.97
4.2.11 Power Plus Communications ...97
4.2.12 POWRtec....98
4.2.13 Sentec ...98
4.2.14 Siemens.99
4.2.15 Silver Spring Networks.100
4.2.16 SmartReach...101
4.2.17 Trilliant .102
4.2.18 Xemex..103
4.2.19 ZPA Smart Energy...104
4.3 MDMS and middleware vendors ..104
4.3.1 Cuculus ....104
4.3.2 Ecologic Analytics ...105
4.3.3 eMeter..105
4.3.4 EnergyICT.106
4.3.5 Enoro...107
4.3.6 Görlitz ..107
4.3.7 Netinium ...108
4.3.8 Oracle ..108
4.3.9 Powel...109
4.3.10 SAP.110
4.4 System integrators and managed service providers..110
4.4.1 IT industry players ...111
4.4.2 Telecom industry players ..113
5 Market profiles ...117
5.1 Regional summary....117
5.1.1 EU smart metering policies ....117
5.1.2 National smart metering policies.119
5.1.3 Top smart metering projects in EU27+2 countries ..121
5.2 Austria...123
5.2.1 Electricity and gas distribution industry structure123
5.2.2 Metering regulatory environment 124
5.2.3 Smart metering market developments..125
5.3 Belgium.126
5.3.1 Electricity and gas distribution industry structure126
5.3.2 Metering regulatory environment and smart metering market developments .127
5.4 Bulgaria.128
5.4.1 Electricity and gas distribution industry structure128
5.4.2 Metering regulatory environment and smart metering market developments .129
5.5 Cyprus ..130
5.5.1 Electricity distribution industry structure....130
5.5.2 Metering regulatory environment and smart metering pilots...131
5.6 Czech Republic ...132
5.6.1 Electricity and gas distribution industry structure132
5.6.2 Metering regulatory environment and smart metering pilots...133
5.7 Denmark ....134
5.7.1 Electricity distribution industry structure....134
5.7.2 Metering regulatory environment 135
5.7.3 Smart metering market developments..136
5.8 Estonia..138
5.8.1 Electricity distribution industry structure....138
5.8.2 Metering regulatory environment and smart metering market developments .139
5.9 Finland ..140
5.9.1 Electricity distribution industry structure....140
5.9.2 Metering regulatory environment 143
5.9.3 Smart metering market developments..143
5.10 France...145
5.10.1 Electricity and gas distribution industry structure145
5.10.2 Metering regulatory environment and smart metering market developments .146
5.11 Germany....147
5.11.1 Electricity and gas distribution industry structure147
5.11.2 Metering regulatory environment 150
5.11.3 Smart meter market developments..152
5.12 Greece ..153
5.12.1 Electricity and gas distribution industry structure153
5.12.2 Metering regulatory environment and smart metering market developments .154
5.13 Hungary 154
5.13.1 Electricity and gas distribution industry structure155
5.13.2 Metering regulatory environment and smart metering market developments .156
5.14 Ireland...156
5.14.1 Electricity and gas distribution industry structure157
5.14.2 Nationwide program for deployment of smart meters ...157
5.15 Italy ..160
5.15.1 Electricity and gas distribution industry structure160
5.15.2 Metering regulatory environment 162
5.15.3 Smart metering market developments..163
5.16 Latvia164
5.16.1 Electricity and gas distribution industry structure164
5.16.2 Metering regulatory environment and smart metering market developments .165
5.17 Lithuania ....165
5.18 Luxembourg....166
5.19 Malta 167
5.19.1 Utility industry structure168
5.19.2 National smart grid project168
5.20 Netherlands ....169
5.20.1 Electricity and gas distribution industry structure169
5.20.2 Metering regulatory environment and smart meter market developments .171
5.21 Norway..173
5.21.1 Electricity distribution industry structure....173
5.21.2 Metering regulatory environment 174
5.21.3 Smart metering market developments and DSO rollout preparations ...176
5.22 Poland...178
5.22.1 Electricity and gas distribution industry structure178
5.22.2 Metering regulatory environment and smart metering projects ...179
5.23 Portugal 180
5.23.1 Electricity and gas distribution industry structure180
5.23.2 Metering regulatory environment and smart metering market developments .181
5.24 Romania182
5.24.1 Electricity and gas distribution industry structure182
5.24.2 Metering regulatory environment and smart meter market developments .183
5.25 Slovakia 184
5.25.1 Electricity and gas distribution industry structure184
5.25.2 Metering regulatory environment and smart meter market developments .185
5.26 Slovenia 185
5.26.1 Electricity industry structure and metering regulatory environment ..185
5.26.2 Smart metering projects....186
5.27 Spain187
5.27.1 Electricity and gas distribution industry structure187
5.27.2 Metering regulatory environment 188
5.27.3 Smart metering market developments..189
5.28 Sweden.191
5.28.1 Electricity distribution industry structure....191
5.28.2 Metering regulatory environment 192
5.28.3 Smart metering market developments..193
5.28.4 The outcome of a regulation driven rollout 196
5.29 Switzerland 198
5.29.1 Electricity distribution industry structure....198
5.29.2 Metering regulatory environment and smart meter market developments .199
5.30 United Kingdom...200
5.30.1 Electricity and gas industry structure....200
5.30.2 Metering regulatory environment 203
5.30.3 Great Britain's planned nationwide smart metering system ....204
5.30.4 Early smart meter deployments ..206
5.30.5 Smart metering in Northern Ireland and the Channel Islands .207
6 Case studies: Smart metering projects in Europe....209
6.1 Enel..209
6.1.1 The Telegestore project in Italy...209
6.1.2 New generation of smart meters and system solutions.211
6.1.3 Endesa's smart metering project in Spain .211
6.1.4 Smart meter rollout plan for Romania ...212
6.2 ERDF212
6.2.1 The Linky Programme..213
6.2.2 System development and full-scale pilot ...215
6.3 E.ON 216
6.3.1 Sweden and Finland: Smart meter rollout and customer engagement pilot....217
6.3.2 Spain and the UK: Complete rollouts before 2020 ...219
6.3.3 Germany and Central Europe: Pilot projects and retail propositions220
6.4 Iberdrola ....221
6.4.1 The PRIME project ..222
6.4.2 Smart metering rollout in Spain ..222
6.5 British Gas .223
6.5.1 Corporate strategy for smart metering..224
6.5.2 Early smart meter deployments ..224
6.6 ESB..225
6.6.1 Results from communication technology trials....226
6.6.2 Results from consumer behaviour trials227
6.6.3 Results from cost benefit analysis....228
6.7 Fortum ..231
6.7.1 Smart meter rollout in Sweden....232
6.7.2 Smart meter rollout in Finland233
6.7.3 Smart meter rollout in Norway ....234
6.8 Eandis...234
6.9 Energa ..236
6.10 Eesti Energia...237
7 Market forecasts and trends ..239
7.1 Market drivers and restraints ...240
7.1.1 Macroeconomic factors240
7.1.2 Political environment ....242
7.1.3 Competitive environment ..244
7.1.4 Technology and standards ....245
7.2 Smart metering market forecast ...246
7.2.1 Geographical markets..247
7.2.2 Capital expenditure forecast ..252
7.3 Technology trends....255
7.4 Industry analysis..256
Glossary 259

List of Figures

Figure 1.1: Top 25 energy companies, by turnover (EU27+2 2011) .4
Figure 1.2: Electricity generation and consumption data (EU27 2011) ..5
Figure 1.3: Electricity market statistics (Europe 2012) ...7
Figure 1.4: Electricity market statistics (Europe 2012) ...8
Figure 1.5: Top 25 electricity DSOs (EU27+2 2012)....10
Figure 1.6: Top 25 electricity DSOs (Southeast and East Europe 2012) ...12
Figure 1.7: Gas market statistics (EU27+2 2012) ...14
Figure 1.8: Top 25 gas DSOs (EU27+2 2012) ...15
Figure 1.9: Major district heating markets (EU27+2 2008) ....16
Figure 2.1: Plug-in hybrid electric vehicle.23
Figure 2.2: Smart metering infrastructure.25
Figure 2.3: Examples of smart electricity meters26
Figure 3.1: Overview of power grid infrastructure....38
Figure 3.2: Standard model for smart grid communication network ....39
Figure 3.3: Alternative model for smart grid communication network ..40
Figure 3.4: Technical comparison of key PLC technology standards...43
Figure 3.5: Members of the G3-PLC Alliance by industry .47
Figure 3.6: Members of the PRIME Alliance by industry ...49
Figure 3.7: Members of the Meters & More Association by industry ....50
Figure 3.8: Selected members of HomePlug Powerline Alliance by industry .53
Figure 3.9: Top 25 semiconductor companies and smart grid technology support.59
Figure 4.1: Energy meter vendor company data (World/Europe, FY2011)68
Figure 4.2: Landis+Gyr smart metering product portfolio (Europe 2012) .69
Figure 4.3: Itron smart metering product portfolio (Europe 2012) ...74
Figure 5.1: Regulatory policies for smart meter rollouts, by country (EU27+2 Q3-2012) 120
Figure 5.2: Top 25 smart metering projects in EU27+2 countries (Q3-2012) ...122
Figure 5.3: Top 10 electricity and gas DSOs in Austria (2012)..124
Figure 5.4: Electricity and gas network operators in Belgium (2012) .127
Figure 5.5: Electricity DSOs and smart meters under contract in Bulgaria (2012) .129
Figure 5.6: Top 5 DSOs in the Czech Republic (2012) ...133
Figure 5.7: Top 10 electricity DSOs in Denmark (2012) ..135
Figure 5.8: Major SM projects in Denmark (October 2012)..137
Figure 5.9: Major SM projects in Estonia (October 2012) ....139
Figure 5.10: Top 10 electricity DSOs in Finland (2012)...141
Figure 5.11: Top 25 SM contracts in Finland (September 2012) ...142
Figure 5.12: Top 50 electricity DSOs in Germany (2012)149
Figure 5.13: Top 5 DSOs in Hungary (2012) ....155
Figure 5.14: Top 15 electricity and gas DSOs in Italy (2012) ....161
Figure 5.15: Electricity and gas DSOs in the Netherlands (2012)..170
Figure 5.16: Top 10 electricity DSOs in Norway (2012) ..174
Figure 5.17: Top 10 full-scale SM projects in Norway (Q3-2012)...177
Figure 5.18: Electricity DSOs in Poland (2012) 179
Figure 5.19: Top 5 DSOs in Portugal (2012) ....181
Figure 5.20: Top 5 DSOs in Romania (2012)....183
Figure 5.21: Electricity DSOs in Slovenia (2012)...186
Figure 5.22: Major electricity and gas DSOs in Spain (2012)....188
Figure 5.23: Top 10 electricity DSOs in Sweden (2012)..192
Figure 5.24: SM contracts awarded by top 10 DSOs in Sweden...194
Figure 5.25: SM vendor selection of medium sized DSOs in Sweden195
Figure 5.26: Features of smart meters in Sweden (2011) ....196
Figure 5.27: Communication technologies of smart meters in Sweden ..197
Figure 5.28: Top 10 electricity DSOs in Switzerland (2012) .199
Figure 5.29: Electricity DSOs in the UK (2012).201
Figure 5.30: Gas DSOs in the UK (2012) 202
Figure 5.31: Estimated electricity and gas retailer market shares in the UK (2012) ....202
Figure 6.1: Telegestore annual operational data in Italy (2011)210
Figure 6.2: Conceptual system architecture for ERDF's smart metering system....214
Figure 6.3: E.ON smart metering status by country (Europe 2012)....216
Figure 6.4: SM contracts awarded by E.ON Sweden (2005–2007)218
Figure 6.5: Comparison of data collection performance for PLC/RF/GPRS .227
Figure 6.6: Calculated NPV for smart metering rollout options in Ireland228
Figure 6.7: Estimated cost for smart electricity meters and network equipment ....229
Figure 6.8: Estimated overhead costs for smart metering in Ireland ..230
Figure 6.9: Estimated capital cost for a smart metering rollout in Ireland231
Figure 6.10: Estimated cost of Energa's smart metering project ...236
Figure 7.1: Household power consumption and retail prices (EU23+2 2012) ..241
Figure 7.2: Smart meter shipments and penetration rate (EU27+2 2011–2017)....247
Figure 7.3: Smart meter shipments by country (EU27+2 2011–2017) ....249
Figure 7.4: Smart meter installed base by country (EU27+2 2011–2017)....250
Figure 7.5: Smart metering capital expenditure forecast (EU27+2 2011–2017) ....252
Figure 7.6: Estimated capital cost for some smart metering projects in Europe ....253
Figure 7.7: Breakdown of costs for smart metering projects in Western Europe ...254

To order this report:
Electrical_Equipment Industry:
Smart Metering in Europe – 9th Edition

__________________________
Contact Nicolas: [email protected]
US: (805)-652-2626
Intl: +1 805-652-2626

 

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
We’ve worked with dozens of early adopters across numerous industries and will debunk common misperceptions, which starts with understanding that many of the connected products we’ll use over the next 5 years are already products, they’re just not yet connected. With an IoT product, time-in-market provides much more essential feedback than ever before. Innovation comes from what you do with the data that the connected product provides in order to enhance the customer experience and optimize busi...
A critical component of any IoT project is the back-end systems that capture data from remote IoT devices and structure it in a way to answer useful questions. Traditional data warehouse and analytical systems are mature technologies that can be used to handle large data sets, but they are not well suited to many IoT-scale products and the need for real-time insights. At Fuze, we have developed a backend platform as part of our mobility-oriented cloud service that uses Big Data-based approache...
The increasing popularity of the Internet of Things necessitates that our physical and cognitive relationship with wearable technology will change rapidly in the near future. This advent means logging has become a thing of the past. Before, it was on us to track our own data, but now that data is automatically available. What does this mean for mHealth and the "connected" body? In her session at @ThingsExpo, Lisa Calkins, CEO and co-founder of Amadeus Consulting, will discuss the impact of wea...
SYS-CON Events announced today that Ericsson has been named “Gold Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. Ericsson is a world leader in the rapidly changing environment of communications technology – providing equipment, software and services to enable transformation through mobility. Some 40 percent of global mobile traffic runs through networks we have supplied. More than 1 billion subscribers around the world re...
SYS-CON Events announced today that Peak 10, Inc., a national IT infrastructure and cloud services provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Peak 10 provides reliable, tailored data center and network services, cloud and managed services. Its solutions are designed to scale and adapt to customers’ changing business needs, enabling them to lower costs, improve performance and focus inter...
The demand for organizations to expand their infrastructure to multiple IT environments like the cloud, on-premise, mobile, bring your own device (BYOD) and the Internet of Things (IoT) continues to grow. As this hybrid infrastructure increases, the challenge to monitor the security of these systems increases in volume and complexity. In his session at 18th Cloud Expo, Stephen Coty, Chief Security Evangelist at Alert Logic, will show how properly configured and managed security architecture can...
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
In his session at @ThingsExpo, Chris Klein, CEO and Co-founder of Rachio, will discuss next generation communities that are using IoT to create more sustainable, intelligent communities. One example is Sterling Ranch, a 10,000 home development that – with the help of Siemens – will integrate IoT technology into the community to provide residents with energy and water savings as well as intelligent security. Everything from stop lights to sprinkler systems to building infrastructures will run ef...
trust and privacy in their ecosystem. Assurance and protection of device identity, secure data encryption and authentication are the key security challenges organizations are trying to address when integrating IoT devices. This holds true for IoT applications in a wide range of industries, for example, healthcare, consumer devices, and manufacturing. In his session at @ThingsExpo, Lancen LaChance, vice president of product management, IoT solutions at GlobalSign, will teach IoT developers how t...
Artificial Intelligence has the potential to massively disrupt IoT. In his session at 18th Cloud Expo, AJ Abdallat, CEO of Beyond AI, will discuss what the five main drivers are in Artificial Intelligence that could shape the future of the Internet of Things. AJ Abdallat is CEO of Beyond AI. He has over 20 years of management experience in the fields of artificial intelligence, sensors, instruments, devices and software for telecommunications, life sciences, environmental monitoring, process...
There is an ever-growing explosion of new devices that are connected to the Internet using “cloud” solutions. This rapid growth is creating a massive new demand for efficient access to data. And it’s not just about connecting to that data anymore. This new demand is bringing new issues and challenges and it is important for companies to scale for the coming growth. And with that scaling comes the need for greater security, gathering and data analysis, storage, connectivity and, of course, the...
Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, will provide tips on how to be successful in large scale machine lear...
Digital payments using wearable devices such as smart watches, fitness trackers, and payment wristbands are an increasing area of focus for industry participants, and consumer acceptance from early trials and deployments has encouraged some of the biggest names in technology and banking to continue their push to drive growth in this nascent market. Wearable payment systems may utilize near field communication (NFC), radio frequency identification (RFID), or quick response (QR) codes and barcodes...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
The IETF draft standard for M2M certificates is a security solution specifically designed for the demanding needs of IoT/M2M applications. In his session at @ThingsExpo, Brian Romansky, VP of Strategic Technology at TrustPoint Innovation, will explain how M2M certificates can efficiently enable confidentiality, integrity, and authenticity on highly constrained devices.
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, will discuss how leveraging the Industrial Interne...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
You deployed your app with the Bluemix PaaS and it's gaining some serious traction, so it's time to make some tweaks. Did you design your application in a way that it can scale in the cloud? Were you even thinking about the cloud when you built the app? If not, chances are your app is going to break. Check out this webcast to learn various techniques for designing applications that will scale successfully in Bluemix, for the confidence you need to take your apps to the next level and beyond.