Welcome!

Artificial Intelligence Authors: Liz McMillan, Elizabeth White, Yeshim Deniz, Pat Romanski, Kevin Benedict

Blog Feed Post

MaaS applied to Healthcare – Use Case Practice

MaaS (Model as a Service) might allow building and controlling shared healthcare Cloud-ready data, affording agile data design, economies of scale and maintaining a trusted environment and scaling security. With MaaS, models map infrastructure and allow controlling persistent storage and deployment audit in order to certify th at data are coherent and remain linked to specific storage. As a consequence, models allow to check where data is deployed and stored. MaaS can play a crucial role in supplying services in healthcare: the model containing infrastructure properties includes information to classify the on-premise data Cloud service in terms of data security, coherence, outage, availability, geo-location and to secure an assisted service deployment and virtualization.

Introduction
Municipalities are opening new exchange information with healthcare institutes. The objective is sharing medical research, hospital acceptance by pathology, assistance and hospitalization with doctors, hospitals, clinics and, of course, patients. This open data [6] should improve patient care, prevention, prophylaxis and appropriate medical booking and scheduling by making information sharing more timely and efficient. From the data management point of view it means the service should assure data elasticity, multi-tenancy, scalability, security together with physical and logical architectures that represent the guidelines to design healthcare services.

Accordingly, healthcare services in the Cloud must primarily secure the following data properties [2]:
-      data location;
-      data persistence;
-      data discovery and navigation;
-      data inference;
-      confidentiality;
-      availability;
-      on-demand data secure deleting/shredding [4] [5] [11] [12].

These properties should be defined during the service design and data models play the “on-premise” integral role in defining, managing and protecting healthcare data in the Cloud. When creating healthcare data models, the service is created as well and properties for confidentiality, availability, authenticity, authorization, authentication and integrity [12] have to be defined inside: here is how MaaS provides preconfigured service properties.

Applying MaaS to Healthcare – Getting Practice
Applying MaaS to design and deploy healthcare services means explaining how apply the DaaS (Database as a Service, see [2] and [4]) lifecycle to realize faster and positive impacts on the go-live preparation with Cloud services. The Use Case introduces the practices how could be defined the healthcare service and then to translate them into the appropriate guidelines. Therefore, the DaaS lifecycle service practices we are applying are [4]:

Take into account, healthcare is a dynamic complex environment with many actors: patients, physicians, IT professionals, chemists, lab technicians, researchers, health operators…. The Use Case we are introducing tries to consider the whole system. It provides the main tasks along the DaaS lifecycle and so how the medical information might be managed and securely exchanged [12] among stakeholders for multiple entities such as hospital, clinics, pharmacy, labs and insurance companies.

The Use Case
Here is how MaaS might cover the Use Case and DaaS lifecycle best practices integrate the above properties and directions:

Objective To facilitate services to healthcare users and to improve exchange information experience among stakeholders. The Use Case aims to reduce costs of services by rapid data designing, updating, deployment and to provide data audit and control. To improve user experience with healthcare knowledge.
Description Current costs of data design, update and deployment are expensive and healthcare information (clinical, pharmaceutical, prevention, prophylaxis…) is not delivered fast enough based upon user experience;
Costs for hospitalization and treatments information should be predictable based upon user experience and interaction.
Actors Clinical and Research Centres;
Laboratories;
Healthcare Institute/Public Body  (Access Administrators);
Healthcare Institute/Public Body (Credentials, Roles Providers);
Patients;
IT Operations (Cloud Providers, Storage Providers, Clinical Application Providers).
Requirements Reducing costs and rapidly delivering relevant data to users, stakeholders and healthcare institutes;
Enabling decision making information to actors who regularly need access [11] [12] to healthcare services but lack the scale to exchange (and require) more dedicated services and support;
Fast supporting and updating healthcare data to users due to large reference base with many locations and disparate applications;
Ensuring compliance and governance directions are currently applied, revised and supervised;
Data security, confidentiality, availability, authenticity, authorization, authentication and integrity to be defined “on-premise”.
Pre-processing and post-processing Implementing and sharing data models;
Designing data model properties according to private, public and/or hybrid Cloud requirements;
Designing “on-premise” of the data storage model;
Modeling data to calculate “a priori” physical resources allocation;
Modeling data to predict usage “early” and to optimize database handling;
Outage is covered by versions and changes archived based on model partitioning;
Content discovery assists in identifying and auditing data to restore the service to previous versions and to irrecoverably destroying the data, if necessary, is asked by the regulations.
Included and extended use case Deployment is guided from model properties and architecture definition;
Mapping of data is defined and updated, checking whether the infrastructure provider has persistence and finding out whether outages are related to on-line tasks;
Deploying and sharing are guided from model properties and architecture definition.


Following, we apply MaaS’ properties (a subset) to the above healthcare Use Case. Per contra, Data Model properties (a subset) are applied along the DaaS lifecycle states:


MaaS Properties

DaaS Lifecycle States

Healthcare Data Model Properties
Data Location Create Data Model
Model Archive and Change
Deploy and Share
Data models contain partitioning properties and can include data location constraints. User tagging of data (a common Web 2.0 practice, through the use of clinic user-defined properties) should be managed. Support to compliant storage for preventative care data records should be provided
Data persistence Create Data Model
Model Archive & Change
Secure delete
For any partition, sub-model, or version of models, data model has to label and trace data location. Model defines a map specifying where data is stored (ambulatory care, clinical files have different storages). Providers persistence can be registered. Data discovery can update partition properties to identify where data is located
Data inference Create Data Model Data model has to support inference and special data aggregation: ambulatory might inference patient’s insurance file. All inferences and aggregations are defined, updated and tested into the model
Confidentiality Create Data Model
Populate, Use and Test
Data model guides rights assignment, access controls, rights management, and application data security starting from data model. As different tenants (hospitals, clinics, insurance companies and pharmacies) access the data, users and tenants should be defined inside the model. Logical and physical controls have to be set
High availability Deploy and Share
Model Archive and Change
Data model and partitioning configuration together with model changes and versions permits mastering of a recovery scheme and restoration when needed. Data inventory (classified by Surgery, Radiology, Cardiology, for example) vs discovery have to be traced and set.
Fast updates at low cost Create Data Model
Generate Schema/Update Data Model
Data reverse and forward engineering permits change management and version optimization in real-time directly on data deployed properties
Multi-database partitioning Create Data Model
Deploy and Share
Bi-directional partitioning in terms of deployment, storage, and evolution through model versioning has to be set. Multi-DBMS version management helps in sharing multi-partitioning deployments: for example, Insurance and Surgery by Patient, normally are partitioned and belong to different tenants vs different databases
Near-zero configuration and administration Create Data Model
Generate Schema/Update Data Model
Data models cover and contain all data properties including scripts, stored procedures, queries, partitions, changes and all configuration and administration properties. This means administrative actions decrease to leave more time for data design and update (and deployment). Regulation compliance can be a frequent administration task: models ensure that healthcare compliance and governance is currently aligned



The Outcome
MaaS defines service properties through which the DaaS process can be implemented and maintained. As a consequence, applying the Use Case through the introduced directions, the following results should be outlined.

Qualitative Outcomes:
1)    Healthcare actors share information on the basis of defined “on-premise” data models: models can be implemented and deployed using a model-driven paradigm;
2)    Data Models are standardized in terms of naming convention and conceptual templates (Pharma, Insurance, Municipality… and so on): in fact, models can be modified and updated with respect the knowledge they were initially designed;
3)    Storage and partitioning in the Cloud can be defined “a priori” and periodic audits can be set to certify that data are coherent and remain linked to specific sites;
4)    The users consult the information and perform 2 tasks:
4.1) try the (best) search and navigate the knowledge for personal and work activities;
4.2) give back information about user experience and practice/procedures that should be updated, rearranged, downsized or extended depending upon community needs, types of interaction, events or public specific situations.
5)    Models are “on-premise” policy-driven tools. Regulation compliance rules can be included in the data model. Changes on current compliance constraints means changes on the data model before it is deployed with the new version.

Quantitative Outcomes:
1)    Measurable and traceable costs reduction (to be calculated as a function of annual Cloud Fee, Resources tuning and TCO);
2)    Time reduction in terms of knowledge fast design, update, deployment, portability, reuse (to be calculated as a function of SLA, data and application management effort and ROI);
3)    Risk reduction accordingly to “on-premise” Cloud service design and control (to be calculated as a function of recovery time, chargeback on cost of applied countermeasures compared with periodical audit based upon model information).

Conclusion
MaaS might provide the real opportunity to offer a unique utility-style model life cycle to accelerate cloud data optimization and performance in the healthcare network. MaaS applied to healthcare services might be the right way to transform the medical service delivery in the Cloud. MaaS defines “on-premise” data security, coherence, outage, availability, geo-location and an assisted service deployment. Models are adaptable to various departmental needs and organizational sizes, simplify and align healthcare domain-specific knowledge combining the data model approach and the on-demand nature of cloud computing. MaaS agility is the key requirements of data services design, incremental data deployment and progressive data structure provisioning. Finally, the model approach allows the validation of service evolution. The models’ versions and configurations are a catalogue to manage both data regulation compliance [12] and data contract’s clauses in the Cloud among IT, Providers and Healthcare actors [9].

References
[1] N. Piscopo - ERwin® in the Cloud: How Data Modeling Supports Database as a Service (DaaS) Implementations
[2] N. Piscopo - CA ERwin® Data Modeler’s Role in the Relational Cloud
[3] D. Burbank, S. Hoberman - Data Modeling Made Simple with CA ERwin® Data Modeler r8
[4] N. Piscopo – Best Practices for Moving to the Cloud using Data Models in the DaaS Life Cycle
[5] N. Piscopo – Using CA ERwin® Data Modeler and Microsoft SQL Azure to Move Data to the Cloud within the DaaS Life Cycle
[6] N. Piscopo – MaaS (Model as a Service) is the emerging solution to design, map, integrate and publish Open Data http://cloudbestpractices.net/2012/10/21/maas/
[7] N. Piscopo - MaaS Workshop, Awareness, Courses Syllabus
[8] N. Piscopo - DaaS Workshop, Awareness, Courses Syllabus
[9] N. Piscopo – Applying MaaS to DaaS (Database as a Service ) Contracts. An intorduction to the Practice http://cloudbestpractices.net/2012/11/04/applying-maas-to-daas/
[10] N. M. Josuttis – SOA in Practice
[11] H. A. J. Narayanan, M. H. GüneşEnsuring Access Control in Cloud Provisioned Healthcare Systems
[12] Kantara Initiatives -http://kantarainitiative.org/confluence/display/uma/UMA+Scenarios+and+Use+Cases

Disclamer
This document is provided AS-IS for your informational purposes only. In no event the contains of “How MaaS might be applied to Healthcare – A Use Case” will be liable to any party for direct, indirect, special, incidental, economical (including lost business profits, business interruption, loss or damage of data, and the like) or consequential damages, without limitations, arising out of the use or inability to use this documentation or the products, regardless of the form of action, whether in contract, tort (including negligence), breach of warranty, or otherwise, even if an advise of the possibility of such damages there exists. Specifically, it is disclaimed any warranties, including, but not limited to, the express or implied warranties of merchantability, fitness for a particular purpose and non-infringement, regarding this document or the products’ use or performance. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies/offices.


Read the original blog entry...

More Stories By Cloud Best Practices Network

The Cloud Best Practices Network is an expert community of leading Cloud pioneers. Follow our best practice blogs at http://CloudBestPractices.net

@ThingsExpo Stories
Personalization has long been the holy grail of marketing. Simply stated, communicate the most relevant offer to the right person and you will increase sales. To achieve this, you must understand the individual. Consequently, digital marketers developed many ways to gather and leverage customer information to deliver targeted experiences. In his session at @ThingsExpo, Lou Casal, Founder and Principal Consultant at Practicala, discussed how the Internet of Things (IoT) has accelerated our abilit...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessio...
In his session at @ThingsExpo, Arvind Radhakrishnen discussed how IoT offers new business models in banking and financial services organizations with the capability to revolutionize products, payments, channels, business processes and asset management built on strong architectural foundation. The following topics were covered: How IoT stands to impact various business parameters including customer experience, cost and risk management within BFS organizations.
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.
DXWorldEXPO LLC announced today that All in Mobile, a mobile app development company from Poland, will exhibit at the 22nd International CloudEXPO | DXWorldEXPO. All In Mobile is a mobile app development company from Poland. Since 2014, they maintain passion for developing mobile applications for enterprises and startups worldwide.
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
The best way to leverage your CloudEXPO | DXWorldEXPO presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering CloudEXPO | DXWorldEXPO will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at CloudEXPO. Product announcements during our show provide your company with the most reach through our targeted audienc...
IoT is at the core or many Digital Transformation initiatives with the goal of re-inventing a company's business model. We all agree that collecting relevant IoT data will result in massive amounts of data needing to be stored. However, with the rapid development of IoT devices and ongoing business model transformation, we are not able to predict the volume and growth of IoT data. And with the lack of IoT history, traditional methods of IT and infrastructure planning based on the past do not app...
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smart...
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)