Welcome!

Artificial Intelligence Authors: Zakia Bouachraoui, Liz McMillan, Yeshim Deniz, Elizabeth White, William Schmarzo

Blog Feed Post

The Cloud Integration Stack

#cloud Integrating environments occurs in layers … cloudintegrationstack

 

We use the term “hybrid cloud” to indicate a joining together of two disparate environments. We often simplify the “cloud” to encompass public IaaS, PaaS, SaaS and private cloud. But even though the adoption of such hybrid architectures may be a foregone conclusion, the devil is, as they say, in the details and how that adoption will be executed is not so easily concluded.

At its core, cloud is about integrating infrastructure. We integrate infrastructure from the application and networking domains to enable elasticity and scalability. We integrate infrastructure from security and delivery realms to ensure a comprehensive, secure delivery chain that promises performance and reliability. We integrate infrastructure to manage these disparate worlds in a unified way, to reduce the burden on operations imposed by necessarily disconnected systems created by integrating environments.

How these integrations are realized can be broken down into a fairly simple stack comprised of the network, resources, elasticity, and control.

The NETWORK INTEGRATION LAYER

At the network layer, the goal is normalize connectivity and provide optimization of network traffic between two disconnected environments. This is generally applicable only to the integration of IaaS environments, where connectivity today is achieved primarily through the use of secured network tunnels. This enables secure communications over which data and applications may be transferred between environments (and why optimization for performance sake may be desired) and over which management can occur. The most basic of network integration enabling a hybrid cloud environment is often referred to as bridging, after the common networking term.

Bridging does not necessarily imply layer 3 normalization, however, and some sort of overlay networking technology will be required to achieve that normalization (and is often cited as a use of emerging technology like SDN).

Look for solutions in this layer to be included in cloud “bridges” or “bridging” offerings.

The RESOURCE INTEGRATION LAYER

At the resource layer, integration occurs at the virtualization layer. Resources such as compute and storage are integrated with data center residing systems in such a way as to be included in provisioning processes. This integration enables visibility into the health and performance of said resources, providing the means to collect actionable performance and status related metrics for everything from capacity planning to redistribution of clients to the provisioning of performance-related services such as acceleration and optimization.

This layer of integration is also heavily invested in the notion of maintaining operational consistency. One way this is achieved is by integrating remote resources into existing delivery network architectures that allow the enforcement of policy to ensure compliance with operational and business requirements.

Another means of achieving operational consistency through resource integration is to integrate remotely deployed infrastructure solutions providing application delivery services. Such resources can be integrated with data center deployed management systems in such a way as to enforce operational consistency through synchronization of policies across all managed environments, cloud or otherwise.

Look for solutions in this layer to be included in cloud “gateway” offerings.

The ELASTICITY INTEGRATION LAYER

Elasticity integration is closely related to resource integration but not wholly dependent upon it. Elasticity is the notion of expanding or contracting capacity of resources (whether storage, network, or compute) to meet demand. That elasticity requires visibility into demand (not as easy as it sounds, by the way) as well as integration with the broader systems that provision and de-provision resources. 

Consider a hybrid cloud in which there is no network or resource integration, but rather systems are in place to aggregate demand metrics from both cloud and data center deployed applications. When some defined threshold is met, a trigger occurs that instructs the system to interact with the appropriate control-plane API to provision or de-provision resources. Elasticity requires not only the elasticity of compute capacity, but may also require network or storage capacity be adjusted as well. This is the primary reason why simple “launch a VM” or “stop a VM” responses to changes in demand are wholly inadequate to achieve true elasticity – such simple responses do not take into consideration the ecosystem that is cloud, regardless of its confines to a single public provider or its spread across multiple public/private locations.

True elasticity requires integration of the broader application delivery ecosystem to ensure consistent performance and security across all related applications.

Look for solutions in this layer to be included in cloud “gateway” offerings.

The CONTROL INTEGRATION LAYER

Finally, the control integration layer is particularly useful when attempting to integrate SaaS with private cloud or traditional data center models. This is primarily because integration at other layers is virtually non-existent (this is also true of PaaS environments, which are often highly self-contained and only truly enable integration and control over the application layer).

The control layer is focused on integrating processes, such as access and authentication, for purposes of maintaining control over security and delivery policies. This often involves some system under the organization’s control (i.e. in the data center) brokering specific functions as part of a larger process. Currently the most common control integration solution is the brokering of access to cloud hosted resources such as SaaS. The initial authentication and authorization steps of a broader log-in process occur in the data center, with the enterprise-controlled systems then providing assurance in the form of tokens or assertions (SAML, specifically crafted encrypted tokens, one time passwords, etc…) to the resource that the user is authorized to access the system.

Control integration layers are also used to manage disconnected instances of services across environments for purposes of operational consistency. This control enables the replication and synchronization of policies across environments to ensure security policy enforcement as well as consistent performance.

Look for solutions in this layer to be included in cloud “broker” offerings. 

Eventually, the entire integration stack will be leveraged to manage hybrid clouds with confidence, eliminating many of the obstacles still cited by even excited prospective customers as reasons they are not fully invested in cloud computing .



Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

IoT & Smart Cities Stories
While the focus and objectives of IoT initiatives are many and diverse, they all share a few common attributes, and one of those is the network. Commonly, that network includes the Internet, over which there isn't any real control for performance and availability. Or is there? The current state of the art for Big Data analytics, as applied to network telemetry, offers new opportunities for improving and assuring operational integrity. In his session at @ThingsExpo, Jim Frey, Vice President of S...
@CloudEXPO and @ExpoDX, two of the most influential technology events in the world, have hosted hundreds of sponsors and exhibitors since our launch 10 years ago. @CloudEXPO and @ExpoDX New York and Silicon Valley provide a full year of face-to-face marketing opportunities for your company. Each sponsorship and exhibit package comes with pre and post-show marketing programs. By sponsoring and exhibiting in New York and Silicon Valley, you reach a full complement of decision makers and buyers in ...
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessio...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
The Jevons Paradox suggests that when technological advances increase efficiency of a resource, it results in an overall increase in consumption. Writing on the increased use of coal as a result of technological improvements, 19th-century economist William Stanley Jevons found that these improvements led to the development of new ways to utilize coal. In his session at 19th Cloud Expo, Mark Thiele, Chief Strategy Officer for Apcera, compared the Jevons Paradox to modern-day enterprise IT, examin...
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
LogRocket helps product teams develop better experiences for users by recording videos of user sessions with logs and network data. It identifies UX problems and reveals the root cause of every bug. LogRocket presents impactful errors on a website, and how to reproduce it. With LogRocket, users can replay problems.
Data Theorem is a leading provider of modern application security. Its core mission is to analyze and secure any modern application anytime, anywhere. The Data Theorem Analyzer Engine continuously scans APIs and mobile applications in search of security flaws and data privacy gaps. Data Theorem products help organizations build safer applications that maximize data security and brand protection. The company has detected more than 300 million application eavesdropping incidents and currently secu...