Welcome!

Artificial Intelligence Authors: Yeshim Deniz, Pat Romanski, Elizabeth White, Liz McMillan, Zakia Bouachraoui

News Feed Item

Machine Learning Helps IBM Boost Accuracy of U.S. Department of Energy Solar Forecasts by up to 30 Percent

Makes Solar Forecasts Available to States to Advance Integration of Solar Power into the Nation's Energy Pipeline

YORKTOWN HEIGHTS, N.Y., July 16, 2015 /PRNewswire/ -- IBM Research (NYSE: IBM) today revealed that solar and wind forecasts it is producing using machine learning and other cognitive computing technologies are proving to be as much as 30 percent more accurate than ones created using conventional approaches. Part of a research program funded the by the U.S. Department of Energy's SunShot Initiative, the breakthrough results suggest new ways to optimize solar resources as they are increasingly integrated into the nation's energy systems.  

IBM also announced that for a limited time it will provide foundational solar forecasts at five-kilometer spatial resolution to help government agencies and other organizations in the lower 48 states best evaluate their impact on supply and demand as well as operations.

Entering the third year, IBM researchers worked with academic, government and industry collaborators to develop a Self-learning weather Model and renewable forecasting Technology, known as SMT. The SMT system uses machine learning, Big Data and analytics to continuously analyze, learn from and improve solar forecasts derived from a large number of weather models. In contrast, most current forecasting techniques rely on individual weather models that offer a more narrow view of the variables that affect the availability of renewable energy.

IBM's approach provides a general platform for renewable energy forecasting, including wind and hydro. It advances the state-of-the-art by using deep machine learning techniques to blend domain data, information from sensor networks and local weather stations, cloud motion physics derived from sky cameras and satellite observations, and multiple weather prediction models. The SMT system represents the first time such a broad range of forecasting methods have been integrated onto a single, scalable platform.

"By continuously training itself using historical records from thousands of weather stations and real time measurements, IBM's system combines predictions from a number of weather models with geographic information and other data to produce the most accurate forecasts -- from minutes to weeks ahead," explained Dr. Siyuan Lu, Physical Analytics Researcher at IBM.

"By improving the accuracy of forecasting, utilities can operate more efficiently and profitably. That can increase the use of renewable energy sources as a more accepted energy generation option," said Dr. Bri-Mathias Hodge, who oversees the Transmission and Grid Integration Group at the National Renewable Energy Laboratory (NREL), a collaborator in the project.

In 2013, solar was the second-largest source of new electricity generating capacity in the U.S., exceeded only by natural gas1. A USA SunShot Vision Study suggests that solar power could provide as much as 14% of U.S. electricity demand by 2030 and 27% by 20502.

Currently, there are two main customers for renewable energy forecasting technologies: utility companies and independent system operators (ISOs). However, the inherent difficulty in producing accurate solar and wind forecasts has required electric utilities to hold higher amounts of energy reserves as compared to conventional energy sources. With solar power installations rapidly growing, future solar penetration levels will soon require increased attention to the value of more accurate solar forecasting.

"Solar photovoltaic resources have expanded dramatically in New England in the last five years, going from just 44 megawatts to 1,000 megawatts," said Jonathan Black, lead engineer on ISO New England's solar PV forecasting efforts and a collaborator in the project. "Currently, most of the solar installations in New England are 'behind the meter' on the distribution system, so their output isn't 'visible' in real time to the ISO's system operators, but it reduces the amount of electricity demand they observe. The growing aggregate output from all these resources across our region will increasingly change the daily demand curve, so the ISO will need accurate solar forecasts to help grid operators continue to balance power generation and consumer demand."

The U.S. Department of Energy SunShot Initiative is a collaborative national effort that aggressively drives innovation to make solar energy fully cost-competitive with traditional energy sources before the end of the decade. The team of scientists from IBM and NREL are presenting a paper on their preliminary findings this week at the European Control Conference (ECC 2015) in Linz, Austria.

About IBM Research
Now in its 70th year, IBM Research continues to define the future of information technology with more than 3,000 researchers in 12 labs located across six continents. Scientists from IBM Research have produced six Nobel Laureates, 10 U.S. National Medals of Technology, five U.S. National Medals of Science, six Turing Awards, 19 inductees in the National Academy of Sciences and 14 inductees into the U.S. National Inventors Hall of Fame – the most of any company.

Media Contact
Christine Vu
IBM Media Relations 
914-945-2755 
[email protected]


1 U.S. Energy Information Administration, Electric Power Monthly, December 2013 edition. 
2 R. Margolis, C. Coggeshall, and J. Zuboy, J., "SunShot vision study," U.S. Department of Energy, Washington, D.C., 2012.

 

IBM Research is producing solar and wind forecasts using machine learning, which are much as 30 percent more accurate than conventional approaches. Part of a research program funded the by the U.S. Department of Energy’s SunShot Initiative, IBM will also make solar forecasts available to help government agencies and other organizations in the lower 48 states advance integration of solar power into the nation's energy pipeline…

 

IBM Corporation logo

 

Video - https://youtu.be/cj2RXjvRKOA  
Photo - http://photos.prnewswire.com/prnh/20150715/237483 
Logo - http://photos.prnewswire.com/prnh/20090416/IBMLOGO

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/machine-learning-helps-ibm-boost-accuracy-of-us-department-of-energy-solar-forecasts-by-up-to-30-percent-300114222.html

SOURCE IBM Research

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...