Welcome!

Artificial Intelligence Authors: William Schmarzo, Pat Romanski, Elizabeth White, Liz McMillan, Kevin Benedict

Related Topics: @CloudExpo, Java IoT, Containers Expo Blog

@CloudExpo: Blog Feed Post

How Memory Leaks Happen in a Java Application | @CloudExpo #JVM #Java #Virtualization

One of the core benefits of Java is the JVM, which is an out-of-the-box memory management

How Memory Leaks Happen in a Java Application
By Eugen Paraschiv

Introduction to Memory Leaks In Java Apps
One of the core benefits of Java is the JVM, which is an out-of-the-box memory management. Essentially, we can create objects and the Java Garbage Collector will take care of allocating and freeing up memory for us.

Nevertheless, memory leaks can still occur in Java applications.

In this article, we're going to describe the most common memory leaks, understand their causes, and look at a few techniques to detect/avoid them. We're also going to use the Java YourKit profiler throughout the article, to analyze the state of our memory at runtime.

1. What is a Memory Leak in Java?
The standard definition of a memory leak is a scenario that occurs when objects are no longer being used by the application, but the Garbage Collector is unable to remove them from working memory - because they're still being referenced. As a result, the application consumes more and more resources - which eventually leads to a fatal OutOfMemoryError.

For a better understanding of the concept, here's a simple visual representation:

How memory leaks happen in Java

As we can see, we have two types of objects - referenced and unreferenced; the Garbage Collector can remove objects that are unreferenced. Referenced objects won't be collected, even if they're actually not longer used by the application.

Detecting memory leaks can be difficult. A number of tools perform static analysis to determine potential leaks, but these techniques aren't perfect because the most important aspect is the actual runtime behavior of the running system.

So, let's have a focused look at some of the standard practices of preventing memory leaks, by analyzing some common scenarios.

2. Java Heap Leaks
In this initial section, we're going to focus on the classic memory leak scenario - where Java objects are continuously created without being released.

An advantageous technique to understand these situations is to make reproducing a memory leak easier by setting a lower size for the Heap. That's why, when starting our application, we can adjust the JVM to suit our memory needs:

-Xms<size>

-Xmx<size>

These parameters specify the initial Java Heap size as well as the maximum Heap size.

2.1. Static Field Holding On to the Object Reference
The first scenario that might cause a Java memory leak is referencing a heavy object with a static field.

Let's have a look at a quick example:

private Random random = new Random();
public static final ArrayList<Double> list = new ArrayList<Double>(1000000);

@Test
public void givenStaticField_whenLotsOfOperations_thenMemoryLeak() throws InterruptedException {
for (int i = 0; i < 1000000; i++) {
list.add(random.nextDouble());
}

System.gc();
Thread.sleep(10000); // to allow GC do its job
}

We created our ArrayList as a static field - which will never be collected by the JVM Garbage Collector during the lifetime of the JVM process, even after the calculations it was used for are done. We also invoked Thread.sleep(10000) to allow the GC to perform a full collection and try to reclaim everything that can be reclaimed.

Let's run the test and analyze the JVM with our profiler:

Java static memory leak

Notice how, at the very beginning, all memory is, of course, free.

Then, in just 2 seconds, the iteration process runs and finishes - loading everything into the list (naturally this will depend on the machine you're running the test on).

After that, a full garbage collection cycle is triggered, and the test continues to execute, to allow this cycle time to run and finish. As you can see, the list is not reclaimed and the memory consumption doesn't go down.

Let's now see the exact same example, only this time, the ArrayList isn't referenced by a static variable. Instead, it's a local variable that gets created, used and then discarded:

@Test
public void givenNormalField_whenLotsOfOperations_thenGCWorksFine() throws InterruptedException {
addElementsToTheList();
System.gc();
Thread.sleep(10000); // to allow GC do its job
}

private void addElementsToTheList(){
ArrayList<Double> list = new ArrayList<Double>(1000000);
for (int i = 0; i < 1000000; i++) {
list.add(random.nextDouble());
}
}

Once the method finishes its job, we'll observe the major GC collection, around 50th second on the image below:

Java static no memory leak

Notice how the GC is now able to reclaim some of the memory utilized by the JVM.

How to prevent it?
Now that you understand the scenario, there are of course ways to prevent it from occurring.

First, we need to pay close attention to our usage of static; declaring any collection or heavy object as static ties its lifecycle to the lifecycle of the JVM itself, and makes the entire object graph impossible to collect.

We also need to be aware of collections in general - that's a common way to unintentionally hold on to references for longer than we need to.

2.2. Calling String.intern() on Long String
The second group of scenarios that frequently causes memory leaks involves String operations - specifically the String.intern() API.

Let's have a look at a quick example:

@Test
public void givenLengthString_whenIntern_thenOutOfMemory()
throws IOException, InterruptedException {
Thread.sleep(15000);

String str
= new Scanner(new File("src/test/resources/large.txt"), "UTF-8")
.useDelimiter("\\A").next();
str.intern();

System.gc();
Thread.sleep(15000);
}

Here, we simply try to load a large text file into running memory and then return a canonical form, using .intern().

The intern API will place the str String in the JVM memory pool - where it can't be collected - and again, this will cause the GC to be unable to free up enough memory:

Java String intern memory leak

We can clearly see that in the first 15th seconds JVM is stable, then we load the file and JVM perform garbage collection (20th second).

Finally, the str.intern() is invoked, which leads to the memory leak - the stable line indicating high heap memory usage, which will never be released.

How to prevent it?
Please remember that interned String objects are stored in PermGen space - if our application is intended to perform a lot of operations on large strings, we might need to increase the size of the permanent generation:

-XX:MaxPermSize=<size>

The second solution is to use Java 8 - where the PermGen space is replaced by the Metaspace - which won't lead to any OutOfMemoryError when using intern on Strings:

Finally, there are also several options of avoiding the .intern() API on Strings as well.

2.3. Unclosed Streams
Forgetting to close a stream is a very common scenario, and certainly, one that most developers can relate to. The problem was partially removed in Java 7 when the ability to automatically close all types of streams was introduced into the try-with-resource clause.

Why partially? Because the try-with-resources syntax is optional:

@Test(expected = OutOfMemoryError.class)
public void givenURL_whenUnclosedStream_thenOutOfMemory()
throws IOException, URISyntaxException {
String str = "";
URLConnection conn
= new URL("http://norvig.com/big.txt").openConnection();
BufferedReader br = new BufferedReader(
new InputStreamReader(conn.getInputStream(), StandardCharsets.UTF_8));

while (br.readLine() != null) {
str += br.readLine();
}

//
}

Let's see how the memory of the application looks when loading a large file from an URL:

Java unclosed streams memory leak

As we can see, the heap usage is gradually increasing over time - which is the direct impact of the memory leak caused by not closing the stream.

How to prevent it?
We always need to remember to close streams manually, or to make a use of the auto-close feature introduced in Java 8:

try (BufferedReader br = new BufferedReader(
new InputStreamReader(conn.getInputStream(), StandardCharsets.UTF_8))) {
// further implementation
} catch (IOException e) {
e.printStackTrace();
}

In this case, the BufferedReader will be automatically closed at the end of the try statement, without the need to close it in an explicit finally block.

2.4. Unclosed Connections
This scenario is quite similar to the previous one, with the primary difference of dealing with unclosed connections (e.g. to a database, to an FTP server, etc.). Again, improper implementation can do a lot of harm, leading to memory problems.

Let's see a quick example:

@Test(expected = OutOfMemoryError.class)
public void givenConnection_whenUnclosed_thenOutOfMemory()
throws IOException, URISyntaxException {

URL url = new URL("ftp://speedtest.tele2.net");
URLConnection urlc = url.openConnection();
InputStream is = urlc.getInputStream();
String str = "";

//
}

The URLConnection remains open, and the result is, predictably, a memory leak:

Java unclosed connections memory leak

Notice how the Garbage Collector cannot do anything to release unused, but referenced memory. The situation is immediately clear after the 1st minute - the number of GC operations rapidly decreases, causing increased Heap memory use, which leads to the OutOfMemoryError.

How to prevent it?
The answer here is simple - we need to always close connections in a disciplined manner.

2.5. Adding Objects with no hashCode() and equals() into a HashSet
A simple but very common example that can lead to a memory leak is to use a HashSet with objects that are missing their hashCode() or equals() implementations.

Specifically, when we start adding duplicate objects into a Set - this will only ever grow, instead of ignoring duplicates as it should. We also won't be able to remove these objects, once added.

Let's create a simple class without either equals or hashCode:

public class Key {
public String key;

public Key(String key) {
Key.key = key;
}
}

Now, let's see the scenario:

@Test(expected = OutOfMemoryError.class)
public void givenMap_whenNoEqualsNoHashCodeMethods_thenOutOfMemory()
throws IOException, URISyntaxException {
Map<Object, Object> map = System.getProperties();
while (true) {
map.put(new Key("key"), "value");
}
}

This simple implementation will lead to the following scenario at runtime:

Java no hascode equals memory leak

Notice how the garbage collector stopped being able to reclaim memory around 1:40, and notice the memory leak; the number of GC collections dropped almost four times immediately after.

How to prevent it?
In these situations, the solution is simple - it's crucial to provide the hashCode() and equals() implementations.

One tool worth mentioning here is Project Lombok - this provides a lot of default implementation by annotations, e.g. @EqualsAndHashCode.

3. How to Find Leaking Sources in Your Application
Diagnosing memory leaks is a lengthy process that requires a lot of practical experience, debugging skills and detailed knowledge of the application.

Let's see which techniques can help you in addition to standard profiling.

3.1. Verbose Garbage Collection
One of the quickest ways to identify a memory leak is to enable verbose garbage collection.

By adding the -verbose:gc parameter to the JVM configuration of our application, we're enabling a very detailed trace of GC. Summary reports are shown in default error output file, which should help you understand how your memory is being managed.

3.2. Do Profiling
The second technique is the one we've been using throughout this article - and that's profiling. The most popular profiler is Visual VM - which is a good place to start moving past command-line JDK tools and into lightweight profiling.

In this article, we used another profiler - YourKit - which has some additional, more advanced features compared to Visual VM.

3.3. Review Your Code
Finally, this is more of a general good practice than a specific technique to deal with memory leaks.

Simply put - review your code thoroughly, practice regular code reviews and make good use of static analysis tools to help you understand your code and your system.

Conclusion
In this tutorial, we had a practical look at how memory leaks happen on the JVM. Understanding how these scenarios happen is the first step in the process of dealing with them.

Then, having the techniques and tools to really see what's happening at runtime, as the leak occurs, is critical as well. Static analysis and careful code-focused reviews can only do so much, and - at the end of the day - it's the runtime that will show you the more complex leaks that aren't immediately identifiable in the code.

Finally, leaks can be notoriously hard to find and reproduce because many of them only happen under intense load, which generally happens in production. This is where you need to go beyond code-level analysis and work on two main aspects - reproduction and early detection.

The best and most reliable way to reproduce memory leaks is to simulate the usage patterns of a production environment as close as possible, with the help of a good suite of performance tests.

And early detection is where a solid performance management solution and even an early detection solution can make a significant difference, as it's the only way to have the necessary insight into the runtime of your application in production.

The full implementation of this tutorial can be found over on GitHub. This is a Maven based project, so it can simply be imported and run as it is.

The post How Memory Leaks Happen in a Java Application appeared first on Stackify.

Read the original blog entry...

More Stories By Stackify Blog

Stackify offers the only developers-friendly solution that fully integrates error and log management with application performance monitoring and management. Allowing you to easily isolate issues, identify what needs to be fixed quicker and focus your efforts – Support less, Code more. Stackify provides software developers, operations and support managers with an innovative cloud based solution that gives them DevOps insight and allows them to monitor, detect and resolve application issues before they affect the business to ensure a better end user experience. Start your free trial now stackify.com

@ThingsExpo Stories
BnkToTheFuture.com is the largest online investment platform for investing in FinTech, Bitcoin and Blockchain companies. We believe the future of finance looks very different from the past and we aim to invest and provide trading opportunities for qualifying investors that want to build a portfolio in the sector in compliance with international financial regulations.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...